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Abstract
The electronic correlations on a C20 molecule, as described by an extended
Hubbard Hamiltonian with a nearest-neighbor Coulomb interaction of strength
V , are studied using quantum Monte Carlo and exact diagonalization methods.
For electron-doped C20, it is known that pair binding arising from a purely
electronic mechanism is absent within the standard Hubbard model (V = 0).
Here we show that this is also the case for hole doping for 0 < U/t � 3
and that, for both electron and hole doping, the effect of a non-zero V is to
work against pair binding. We also study the magnetic properties of the neutral
molecule, and find transitions between spin singlet and triplet ground states for
either fixed U or V values. In addition, spin, charge and pairing correlation
functions on C20 are computed. The spin–spin and charge–charge correlations
are very short-range, although a weak enhancement in the pairing correlation is
observed for a distance equal to the molecular diameter.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Shortly after the discovery of superconductivity in C60, it was suggested by Chakravarty,
Kivelson and Gelfand [1–3] that an electronic mechanism, in which pairs of electrons
preferentially reside on a single molecule rather than on neighboring molecules, might provide
the pairing mechanism for superconductivity. Using second-order perturbation theory they
found evidence for pair binding, above a threshold value of U/t ≈ 3. They also found that
this attraction between doped electrons is accompanied by a violation of Hund’s rule, which
requires maximal spin, for the two-electron-doped C60, and that for U/t > 3 the ground
state for two-electron-doped C60 has spin zero [1, 2]. However, recent calculations [4], using
quantum Monte Carlo (QMC) techniques, suggest that the repulsive Hubbard model does not
lead to pairing on C60. On the other hand, there are geometries where pair binding is known
to occur [3, 5]. In particular, White et al in exact diagonalization (ED) studies of the extended
Hubbard model on the much smaller C12 (truncated tetrahedron) molecule have shown that
a negative pair-binding energy (effective attraction between doped electrons) exists for an
intermediate value of the on-site Coulomb interaction U (see equation (1) and figure 3(a)).
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A more realistic model of the fullerenes would include longer-ranged Coulomb repulsions, and
it was found that this pairing energy also survives in C12 for modestly repulsive values of the
nearest-neighbor (NN) interaction, V , but increasing V eventually kills the pair binding. The
same violation of Hund’s rule as in C60 was also observed in C12 (see [5] and figure 3(b)).

With a different extended Hubbard model, Sondhi et al [6] studied the effects of both
NN interaction V and the off-diagonal interactions on the pair-binding energy and Hund’s
rules violation in the C60 molecule. Using perturbative calculations, they found that the NN
interaction V terms suppress pair binding while the off-diagonal terms enhance it. Goff and
Phillips [7, 8] considered the effects of both NN interaction V and longer-range terms, V , on
the pair-binding energy, again by perturbation theory, and also found that the inclusion of V
terms strongly suppresses pair binding in C60.

The fact that ED studies found pair binding for the smaller C12 molecule [5] and the recent
rapid development of experimental techniques for the synthesis of C20 solid phases [9, 10]
make it interesting and timely to explore correlation effects in C20, the smallest gas-phase
fullerene molecule which has dodecahedral geometry [11]. In [12], we briefly reported on pair
binding for electron-doped C20 for a wide range of values of U/t � 100, but with V = 0,
using both QMC for U/t � 3 and ED for the full range of values. Using cluster perturbation
theory [13, 14] we also identified a metal–insulator transition near Uc/t ∼ 4.2 for molecular
solids formed of C20. In this paper, we provide further details of our numerical techniques and
consider both electron and hole doping for an extended Hubbard model with both on-site and
NN repulsion. We also study density–density, spin–spin and pairing correlation functions as a
function of separation on the molecule.

The extended Hubbard Hamiltonian on a single C20 molecule is defined as

H = −t
∑

〈i j〉σ
(c†

iσ c jσ + h.c.) + U
∑

i

ni↑ni↓ + V
∑

〈i j〉
ni n j , (1)

where c†
iσ (ciσ ) is an electron creation (annihilation) operator on site i , indices i, j run over

20 sites of a dodecahedron, U is the on-site Coulomb interaction, V is the NN Coulomb
interaction, and ni = ni↑ + ni↓ is the number of electrons on site i . Our goal here is to
focus on strong correlation effects in C20 using exact numerical techniques. The Hamiltonian
equation (1) is a simplified model of C20, but it still largely captures such correlation effects.
We calculate ground-state energies as a function of both U and V for neutral, one- and two-
electron dopings. Comparisons between these energies show that the electronic pair-binding
energy �b(21) = E(20) + E(22) − 2E(21) is positive (repulsive) for the parameter ranges
studied (0 < U/t � 3 for V/t = 0.2 and 0.20 � V/t � 0.46 for U/t = 1). This implies that
it is energetically favorable for two electrons to stay on different molecules as opposed to the
same molecule. We also find that the existence of a NN Coulomb interaction V enhances this
tendency, as expected, in order to reduce the intramolecular Coulomb interaction energy. For
hole doping, the corresponding hole pair-binding energy �b(19) = E(18) + E(20) − 2E(19)

is again positive (repulsive) for the parameter range (0 < U/t � 3 and V = 0), i.e. there is an
effective repulsion between two doped holes on the same C20 molecule.

Unlike the case of C60, the highest occupied molecular orbital (HOMO) of the neutral C20

molecules, in the weakly interacting limit, is a four-fold orbitally degenerate level occupied by
two electrons (see figure 1). Hund’s rules predict for this case that the two electrons occupy
different orbitals and have total S = 1, implying that, in the absence of a Jahn–Teller distortion,
the neutral molecule has a magnetic moment. In previous work [12], for V = 0, we have
confirmed this magnetic moment for 0 < U/t < 3 and shown that at the metal–insulator
transition, Uc, the ground state changes from a spin triplet to a singlet for neutral C20 and from
S = 2, through S = 1, to S = 0 for C2−

20 . Here we extend this analysis to determine the
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Figure 1. Huckel molecular orbitals of a neutral dodecahedral C20 molecule [15].

ground-state spin configuration for neutral C20 for a fixed value of U/t = 2 as a function of
V , and find a level crossing between V/t = 1 and 1.5 for spin triplet and singlet states. For
U/t = 2, we estimate the critical Vc/t to be 1.1 for the spin triplet to singlet transition of the
neutral molecule. In light of our results for V = 0 [12], we expect that, in this case too, the
magnetic transition at Vc will coincide with a metal–insulator transition for molecular solids
formed of C20. We also investigate the pair-binding energy for the hole-doped case for both
V = 0 and V �= 0, and examine the effect of a non-zero V on Hund’s rule.

The occurrence of orbital degeneracy and the resulting magnetic moment are tied to the
icosahedral symmetry of the molecule. Simple molecular orbital calculations strongly suggest
that the molecular symmetry is lowered by a Jahn–Teller effect from Ih to D3d, with the HOMO
being a non-degenerate singlet [16]. However, the correlation effects that give rise to Hund’s
rule compete with this tendency to form a singlet ground state, and hence they also compete
with the Jahn–Teller effect. As reported previously [12], we find that when the on-site Coulomb
interaction U/t is sufficiently large (U � 4.2t), the ground state is gapped with S = 0 and the
Ih symmetry is likely stable against a D3d distortion. In order to focus more exclusively on the
effects of the non-zero V term, here we shall assume that the icosahedral symmetry is unbroken
even for smaller U values.

In the next section, we briefly introduce the projection quantum Monte Carlo (PQMC) [17]
and ED methods for this model. This is followed, in section 3, by a comparison of PQMC with
ED results on a C12 and a discussion of Hund’s rule violation in C12. In section 4 we focus on
the C20 molecule. Hole pair binding in C20 is discussed and the influence of a non-zero nearest-
neighbor V on the pair binding is investigated and results for the triplet–singlet transition with
V are described along with calculations of several correlation functions in the C20 molecule.
Section 5 contains discussion and conclusions.

2. Method

2.1. PQMC

As noted in [18], the idea in PQMC simulations of the extended Hubbard model is to decouple
the two-body interaction terms (both U and V terms) in the partition function by means of
discrete Hubbard–Stratonivich transformations [19]. The resultant one-body terms are coupled
to several auxiliary Ising spin fields that live either on the lattice sites (U term) or on the lattice
bonds (V term). One such discrete transformation in the V term is given by

e−�τ V niαn jβ = 1
2 Tr{σαβ

i j } eλ2σ
αβ

i j (niα−n jβ)− �τV
2 (niα+n jβ), (2)

where α, β = ↑,↓, σ
αβ

i j = ±1 is the auxiliary Ising spin on bond (i, j), �τ is the discrete
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imaginary time slice in PQMC, and the parameter λ2 is determined by tanh2(λ2/2) =
tanh(�τ V

4 ). The same decoupling equation applies for on-site Coulomb interactions, i.e.
i = j , except that the constant V is replaced by U and λ2 by λ1, which is similarly given by
tanh2(λ1/2) = tanh(�τU

4 ). These one-body fermionic terms in the partition function can then
be traced out explicitly, leaving traces over the auxiliary Ising spins, which can be evaluated by
Monte Carlo (MC) [19]:

Z =
∑

{σ }

∏

α

det[1 + BL(α)BL−1(α) · · · B1(α)]

=
∑

{σ }
det O({σ })↑ det O({σ })↓, (3)

where {σ } = {σ 1, σ 2, σ 3, σ 4, σ 5} is the set of five species of Ising fields, with σ 1 representing
the on-site Ising spins and σ 2−5 the NN bond Ising spins (one for each of the four spin
configurations). The Bl matrices are defined as

Bl(α) = e−�τ K/2eWα (l)e−�τ K/2, (4)

(K )i j =
{

−t for i, j NN,

0 otherwise,
(5)

Wα
i j (l) = α

[
δi jλ1σ

1
i (l) + δ〈i j〉λ2

5∑

m=2

σ m
i j

]
, (6)

δ〈i j〉 =
{

1 for i, j NN,

0 otherwise,
(7)

where l = 1, . . . , L is the time slice index, and α = ±1 denotes the two determinants in
equation (3).

A complete MC sweep through the lattice will therefore consist of trial flipping of one
species of auxiliary Ising spins on all the lattice sites and trial flipping of four species of
auxiliary Ising spins on all the NN bonds in the lattice system. Fast calculation of the probability
ratio in flipping one bond Ising spin at one time slice is still possible using the local update
technique [20], except that one needs to apply the probability ratio formula twice for each bond
Ising spin flip (which affects two sites).

We remark that in this decomposition scheme it is possible to treat even longer-range
Coulomb interactions (e.g. next-nearest-neighbor (NNN) Coulomb interactions, etc) by
introducing more species of auxiliary Ising spins that live on these longer bonds. The only
problem is that one needs to walk through a larger and larger phase space of the auxiliary
Ising spins during the MC simulations, which will, of course, increase the computation time.
Practically, we find that, to collect the same amount of data, the CPU time doubles for V �= 0
compared with the V = 0 case.

In a typical calculation the projection factor β in PQMC was taken to be β = 10/t , and
the discrete time slice was set at �τ = 0.05/t . Typically, 103 MC warm-up sweeps through
the whole space–time lattice are performed before collecting data. To estimate the statistical
errors, we use the same method as was used in [4].

2.2. Exact diagonalizations (ED)

The exact diagonalizations on C12 are performed using standard Lanczos techniques and we
therefore focus on the ED of C20. We always use the total particle number N and total Sz as
quantum numbers, since they are conserved and we perform ED in the corresponding reduced
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Figure 2. Dodecahedral C20 geometry in two-dimensional (2D) view. Solid and empty points
denote two sets (orbits) of carbon atoms divided by the S10 symmetry.

Figure 3. (a) Variation of the pair-binding energy �b(13) = E(12) + E(14) − 2E(13) of a
truncated tetrahedron molecule (C12) with U and V as in figure 3 in [5]. (b) Hund’s rules violation
in the two-electron-doped C12 molecule, where �E(14) = E14(triplet) − E14(singlet).

Hilbert space. In addition, ED are performed using the S10 sub-group symmetry present in the
point group Ih. The improper rotations generated by the elements of S10 can be visualized as a
rotation of an angle 2π/10 around the center of a pentagon followed by a reflection in a plane
perpendicular to the rotation axis. This is illustrated in figure 2 where the numbering of the sites
is to be understood in the following way: the sites 1 through 10 are shifted up by 1 (modulo 10)
under S10 and the sites 11–20 are shifted in a similar manner. Hence, under the action of the S10

group, two different orbits exist, marked by the solid and open points in figure 2. Many other
symmetries exist but the S10 symmetry is large and relatively easy to implement, and we have
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not exploited additional symmetries since the added CPU time needed to implement them was
significant enough to offset the time gained from reducing the size of the Hilbert space. The
S10 quantum number can be thought of as a pseudo angular momentum, j10, and for each value
of N and Sz we have to find the value of j10 that corresponds to the ground state. In many cases
it is not an obvious value and it is often non-zero. In the accompanying tables we show the
values of j10 corresponding to the listed energies, and in table 4 we show complete dispersion
of the lowest magnetic modes for neutral C20 as a function of j10.

The calculations are fully parallelized Lanczos calculations executed on SHARCNET
computers. A typical calculation performed at half-filling for N = 20, Sz = 0 that, after
S10 symmetry reductions, requires a Hilbert space of N = 3418 725 024, is performed with
P = 64 CPUs using about 540 s of CPU time (for each CPU) per Lanczos iteration. The
memory requirement for this example is roughly 2.1 Gb per CPU. Excellent convergence is
always observed with less than 300 Lanczos iterations, typically less than 200.

The heart of the Lanczos calculation is the matrix vector multiplication that, in this case,
has to be implemented in parallel. As one of several choices, we have chosen to have each CPU
apply the full matrix to one section of the vector, with each CPU returning the corresponding
section of the resulting vector. The partial results from each CPU therefore need to be
communicated between all P processors, with each processor communicating to all the others.
Due to the size of the involved Lanczos vectors (40–60 Gb) which greatly exceeds the available
per-CPU memory, it is necessary to repeat this P × P communication step many thousands of
times per Lanczos step. The communication step therefore quickly becomes the bottle-neck in
the calculation unless it can be performed very efficiently. Fortunately, this is possible using
non-blocking communications where the individual CPUs do not wait for a communication to
complete. The drawback of using non-blocking communications is that buffer space has to be
allocated until it has explicitly been verified that the communication has been completed. We
have implemented a dual buffer strategy, yielding an extremely efficient communication step.
The CPU time spent per CPU is, for all accessible numbers of processors that we have been
able to check, overwhelmingly dominated by actual calculations rather than communications.
For a fixed N we have then observed almost linear scaling for P = 64, 128, 256, 384 and 512.
The great advantage of this approach is that the complexity of Lanczos calculations scales with
the size of the Hilbert space, N , as N logN . Neglecting the logarithm, a doubling of the size of
the Hilbert space, N , can then be almost compensated by doubling the number of processors P .

3. Results for C12

Before turning our attention to the C20 molecule we investigate the simpler C12 molecule in
the truncated tetrahedron configuration. As mentioned above, previous studies [5] have found
a negative pair-binding energy on this molecule that, however, became positive (repulsive
interaction) in the presence of a sufficiently large V . The purpose of this investigation is two-
fold. First of all, we want to verify the correctness of our numerical approach while at the same
time highlighting some of the subtleties of interpreting the PQMC data. Secondly, due to the
relative ease with which calculations can be performed on this molecule, it allows for a rather
detailed study of the correlation between the negative pair-binding energy and a violation of
Hund’s rule for the two-electron-doped molecule [1, 2].

3.1. Tests on the C12 molecule

To test our ED program, we use the same parameters as in [5] and we are able to reproduce the
same pair-binding energy as shown in figure 3(a). In table 1, we see good agreement between

6
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Table 1. Comparison of ED and PQMC calculations on the truncated tetrahedron (12 sites) at
U = 2t and V = 0.2t . En(Sz) is the energy of a system with n electrons and a z-component of
total spin Sz . �n,m is the energy difference E12+n(Sn

z ) − E12+m(Sm
z ) with (Sn

z , Sm
z ) given in the

second column. For binding energies �b(n), the second column shows (Sn+1
z , Sn−1

z , Sn
z )—the Sz

values for the three states involved in its calculation [4].

S Sz ED PQMC Sign

E12 0 0 −9.464 766 9965 −9.466(2) 0.97
E13 1/2 1/2 −6.828 700 3500 −6.829(4) 0.33
E13 3/2 3/2 −6.084 421 4907 −6.059(6) 0.20
E14 0 0 −4.156 842 5864 −4.11(1) 0.11
E14 1 1 −4.077 292 4523 −4.080(5) 0.34
�1,0 (1/2, 0) 2.636 066 6465 2.637(4)
�1,0 (3/2, 0) 3.380 345 5058 3.407(6)
�b(13) (0, 0, 1/2) 0.035 791 1171 0.08(1)

PQMC and ED energy values within statistical error bounds. An exception is found for E14

and Sz = 0, where the PQMC result lies a bit higher than the ED energy value. This is due
to the mixture of singlet and triplet components in the Sz = 0 sector and the near degeneracy
of these two states that makes the projection of the singlet ground state out of the mixed state
difficult [4]. We will see that this difficulty does not occur for C20, where the ground state
with two-electron doping is in the spin-2 sector for U/t � 3. Hence the pair-binding energy
extracted for C20 by PQMC for U/t � 3 is more reliable than the one for C12.

3.2. Hund’s rule violation for C2−
12

In the perturbation theory studies of pair binding in the larger fullerene C60 [1, 2], it was noted
that a negative pair-binding energy (effective attraction) was correlated with a violation of
Hund’s rule for the two-electron-doped molecule; i.e. that for C2−

60 the ground state was found
to be a singlet. Although our QMC results did not support the existence of pair binding in
C2−

60 and found a spin triplet ground state, it is of interest to examine the correlation between
pair binding and the violation of Hund’s rule in C12. The non-interacting V = U = 0 neutral
molecule has completely filled levels and hence a total spin zero. Added electrons therefore
enter an unfilled level with an orbital degeneracy of three. Hund’s rule would then predict C2−

12
to have total S = 1. What we find is that the ground state of C2−

12 is a singlet both when the
pairing is attractive and when it is driven repulsive by increasing the nearest-neighbor repulsion
V . This is shown in figure 3(b), where the singlet state is found to lie below the triplet state
for both positive and negative pair-binding energies, for the range of U and V studied. Thus,
for this case, Hund’s rule is found to be violated where pair-binding occurs as well as where it
does not.

4. Results for C20 molecule

We now turn to the more interesting case of the C20 molecule. Compared with the V = 0
case, where PQMC already has a sign problem for the non-bipartite dodecahedral molecular
geometry, the NN Coulomb interaction V terms introduce more sources of negative probability
weight, lowering the average value of the sign. Figure 4 shows the average sign for these two
cases. For the worst case (N = 20, Sz = 1, U/t = 3, V/t = 0.2), where the average sign is
as low as 0.05, we have collected 7.2 × 107 MC lattice sweeps. This gives a relatively large
but nevertheless meaningful error bar (see figure 5(a)). For other parameter values, we have
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Figure 4. Average sign behavior for both V/t = 0 (solid symbols) and V/t = 0.2 (hollow symbols)
at different fillings N = 20, 21, 22. The lines connecting the points are guides to the eye only.

Figure 5. Electronic pair-binding energies �b(21)/t as a function of U/t and V/t from ED and
PQMC simulations. (a) The variation of pair-binding energy with U/t for fixed V/t values. (b) The
variation of pair-binding energy with V/t for fixed U/t = 1. The lines connecting MC and ED
points are guides to the eye only.

collected about 2.2 × 107 MC sweeps. The acceptance ratio for the on-site Ising spin trial
flipping ranges from 80% (U/t = 3) to 93% (U/t = 1), while that for the bond Ising spins is
about 95% due to the small value of V/t = 0.2.
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Table 2. Comparison of ground-state energies from ED and PQMC calculations on the C20

molecule at U/t = 2 and V = 0. See the caption in table 1 for the corresponding definition of
various quantities.

S Sz ED j10 PQMC Sign

E18 0 0 −22.404 446 6933 0 −22.402(1) 1.00
E18 1 1 −21.677 835 7505 ±3, 5 −21.637(2) 0.49

E19 1/2 1/2 −21.522 324 3600 ±1,± 3 −21.5227(6) 0.64
E19 3/2 3/2 −20.899 019 1757 0, ±4 −20.826(3) 0.35

E20 1 0 −20.598 383 4340 0,±2 −20.533(3) 0.26
E20 1 1 −20.598 383 4340 0,±2 −20.597(2) 0.54
E20 0 0 −20.592 0234 654 0,±2,±4
E20 2 2 −19.963 4427 212 ±2,±4, 5

E21 3/2 1/2 −19.633 178 6587 ±1,±3 −19.465(8) 0.19
E21 3/2 3/2 −19.633 178 6587 ±1,±3 −19.634(1) 0.64

E22 2 0 −18.628 912 9089 0 −18.282(7) 0.10
E22 2 1 −18.628 912 9089 0 −18.448(5) 0.32
E22 2 2 −18.628 912 9089 0 −18.628(1) 1.00

4.1. Pair-binding energy

Table 2 shows the energies of the C20 molecule at different fillings from PQMC and ED for
U/t = 2 and V = 0. Both ED and PQMC predict the ground states to be in the same spin
sectors for the molecule, and the calculated energies are in agreement within MC error bounds.

In order to understand the comparison of PQMC and ED data in table 2, it is important
to recognize a systematic weakness of PQMC which is that, when the ground state is a spin
multiplet, the different partners appear to have different energies, increasing with decreasing
values of |Sz |, because the states with smaller values of |Sz| mix with higher-lying states that
have the same value of |Sz |. In general, except for statistical error, a state with Sz = 0 will
appear to lie above its partners with the same total S. This tendency is apparent in the results
for E20 (S = 1), E21 (S = 3/2), and E22 (S = 2). Conversely, if a ground state with Sz = 0
lies below a state with Sz = 1, we expect the ground state to be a singlet. However, in this
case, the value of the ground-state energy will be perturbed upward by any admixture of the
next higher state with S = 1, Sz = 0, as happened for E14(S = 0) in table 1. In general, it is
also true that accurate PQMC results are more easily obtained when the average sign is close
to 1 compared to when the average sign is small.

Pair-binding energies �b(21)/t (electron) and �b(19)/t (hole) as a function of both U/t
and V/t are shown in figure 5 and 6, respectively. For V = 0, for both electron and hole doping,
we see that the pair-binding energy is always positive (repulsive) for U/t > 0, and increases
with increasing U/t . This is the same behavior as we observed for the C60 molecule [4].
Turning on the NN Coulomb interaction V (V/t = 0.2 in figure 5(a)) increases the pair-binding
energy further. Hence, putting two extra electrons on the same neutral molecule becomes more
costly when the NN Coulomb interaction is not negligible. Panel (b) in figure 5 shows the
variation of the pair-binding energy as a function of V/t for fixed U/t = 1. Again the
pair-binding energy is positive (repulsive), and generally increases with V/t . The agreement
between ED and PQMC results is fairly good and, even though the PQMC data show some
tendency to non-monotonic behavior for this interval of V/t , the ED results show that this is
explained by the natural statistical spread of the data. Hence, in the regime V < Vc, U < Uc,
the pair-binding energy increases with both U and V and, energetically, it becomes increasingly
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Figure 6. Hole pair-binding energies �b(19)/t as a function of U/t for V = 0 from ED and PQMC
simulations. The lines connecting MC points are guides to the eye only.

Table 3. Ground-state energies for neutral, one- and two-electron-doped C20 molecules at
U/t = 3, 5 and V = 0 from PQMC and ED, which shows a transition between Hund’s and anti-
Hund’s states at 3 < U/t < 5 for neutral, one-, and two-electron-doped molecules, respectively.
Data without error bars are from ED.

S Sz U/t = 3 S Sz U/t = 5 (ED) j10

E20 1 0 −17.04(2) 0 0 −12.111 284 292 5
E20 1 1 −17.036(6) 1 1 −11.877 033 283 0,±2
E21 3/2 1/2 −15.29(6) 1/2 1/2 −9.116 556 0273 ±1,±3, 5
E21 3/2 3/2 −15.529(5) 3/2 3/2 −8.963 362 3599 ±1,±3
E22 2 0 −13.936 353 1 0 −5.971 531 3615 ±2,±4
E22 2 1 −13.81(2) 1 1 −5.971 531 3615 ±2,±4
E22 2 2 −13.935(1)

favorable for two electrons to stay on two different C20 molecules. However, we note that, for
V = 0 and U > Uc, it was previously found [12] that the pair-binding energy decreases with
U , reaching a minimum at U/t ∼ 10, before increasing and reaching a finite value in the
U → ∞ limit.

4.2. Hund’s rule

It is also clear, from the data in tables 2 and 3, that Hund’s rule is obeyed for the corresponding
range of parameters, i.e. U/t � 3, V = 0. That is, the ground state for 20 through 22
all have the maximum values of total spin for electrons outside the C2+

20 core, ranging from
total spin 1 for 20 electrons through total spin 2 for 22 electrons. This behavior occurs in the
range of parameters where PQMC converges (for maximal |Sz| as discussed above). As U/t is
increased above three, the sign problem prevents reliable PQMC calculations. This difficulty
does not arise in ED where accurate calculations are possible for essentially any value of U/t .
We have used ED to explore what happens for larger values of U/t [12]. For example, results
for U = 5t are shown in the right-hand columns of table 3. Here Hund’s rule is clearly violated.
For 20 electrons, the ground state has spin zero; for 21 electrons the ground state has spin 1/2;
while for 22 electrons the ground state has spin 1. Clearly there are level crossings in the range
3 < U/t < 5. Additional results in this regime are given in [12]. ED also allows the calculation
of the spin gap, the gap between the ground state and the lowest-lying excited state with
different total spin. Results are shown in table 4 for a neutral C20 molecule with U = 2, 5, 8 and
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Table 4. ED results for the dispersion of the lowest singlet and triplet states with j10 for neutral
C20 with U/t = 2, 5 and 8 in all cases with V/t = 0.

U S j10 = 0 j10 = ±1 j10 = ±2 j10 = ±3 j10 = ±4 j10 = 5

0 −20.592 023 4655 >−19.90 −20.592 023 4655 >−19.90 −20.592 023 4655 −20.052 702 9539

2 1 −20.598 383 4340 −19.977 697 0001 −20.598 383 4340 −19.977 697 0001 −20.598 159 2741 −19.963 442 7213

0 −12.012 301 4488 −11.672 656 2451 −12.012 301 4488 −11.672 656 2451 −12.012 301 4488 −12.111 284 2959

5 1 −11.877 033 2831 −11.847 212 0431 −11.877 033 2831 −11.847 212 0431 −11.810 304 4760 −11.811 817 9567

0 −8.045 258 4717 −7.806 831 −8.045 258 4717 −7.806 836 5859 −8.045 258 4717 −8.180 338 5740

8 1 −7.949 783 6200 −7.941 547 9844 −7.949 783 6200 −7.941 547 9844 −7.849 004 7592 −7.915 671 4009

V = 0. When the metal–insulator transition occurs in the vicinity of Uc/t ∼ 4.2, the ground-
state spin changes from an orbitally degenerate S = 1 for U < Uc to a non-degenerate singlet
for U > Uc. From the results presented in table 4 we see that it is the singlet state at j10 = 5
that moves toward the bottom of the spectrum with increasing U and, eventually, for U > Uc

becomes the ground state. Focusing on the case V/t = 0, we see from table 4 that, at U/t = 2,
the ground-state energy is a singlet E1/t = −20.598 383 4340 with a gap to the lowest-lying
singlet of �E1,0/t = 0.006 359 9685. Here the superscripts denote the spin of the ground and
excited states, respectively. For U/t � 5 we find that the ground state for the Ih configuration
is now a non-degenerate singlet, S = 0, with energy E0/t = −12.111 284 2922. The lowest-
lying triplet excitation with �E0,1/t = 0.234 251 0092. This picture continues to hold for
larger U/t with the triplet gap at U/t = 8 only slightly larger, �E0,1/t = 0.230 554 9540.

Next we explore the ground-state spin of the neutral molecule with different V/t values
for a fixed U/t = 2. Using ED techniques we determine that the ground state for V/t = 1
and 1.5 in both cases occur for j10 = 0. However, the ground state changes from a spin
triplet for V/t = 1 to a spin singlet for V/t = 1.5. Specifically, at V/t = 1 we find
E/t (singlet) = 5.702 018 and E/t (triplet) = 5.639 496, whereas for V/t = 1.5 we find
E/t (singlet) = 17.318 536 and E/t (triplet) = 17.499 741. By assuming a linear dependence
of the energy on V/t in this region, we determine that the level crossing occurs near Vc/t ∼ 1.1
for U/t = 2.

4.3. Correlation functions

We have also investigated what other correlations might be induced in the C20 molecule
by calculating the following correlation functions: charge–charge, spin–spin, and pairing
correlations as a function of lattice distance. Similar calculations for the C60 molecule have
been reported in [21] and [22].

We define the correlation functions with respect to lattice site 1 in the neutral
molecule: 〈n1ni 〉 is the charge–charge correlation, 〈S1 · Si 〉 is the spin–spin correlation, and
〈c†

1σ c†
i,−σ ci,−σ c1,σ 〉 is the pairing correlation, where i = 1, . . . , 20. In figure 7, we show

the variation of these correlations for U = 2t and 3t as a function of lattice spacing d1i/R,
where d1i is the distance between site 1 and i , and R is the molecular diameter. For the
dodecahedral geometry, there are only five inequivalent neighbors, all at distinct distances.
One can understand the on-site correlations in terms of the probabilities, pn, n = 0, 1, 2, for
having n electrons on each site. Then, the on-site correlations functions are 〈n2

1〉 = p1 + 4p2,
〈S2

1 〉 = 3p1/4, and 〈c†
1σ c†

1,−σ c1,−σ c1,σ 〉 = p2.
In figure 7(a) we show results for the charge–charge correlation function for two different

values of U with V = 0. As expected, the on-site charge–charge correlation is reduced by an
increase in the on-site Coulomb interaction U (panel (a)). At larger distances, the charge on
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Figure 7. Variation of (a) charge–charge, (b) spin–spin, and (c) pairing correlation functions for
U = 2t, 3t and V = 0 for a C20 molecule with respect to the lattice site spacing. d1i is the distance
between site 1 and i . R is the diameter of the C20 molecule.

site 1 and i are uncorrelated. The unit value of the charge–charge correlation corresponds to
uniform distribution of charge.

Figure 7(b) shows the spin–spin correlation function again for U/t = 2, 3 with V = 0.
The NN spin–spin correlation has a negative finite value, and its magnitude is enhanced by a
larger U value. For spatial distances larger than NN spacing we see that this correlation function
quickly approaches 0. Similar behavior has been observed for the spin–spin correlation in the
C60 molecule in [21] and it was suggested that the rapid decay of the spin–spin correlation
function was indicative of a resonant valence bond (RVB) or ‘spin dimer’ state. The similarity
between our results and those of [21] suggest that the spin correlations in the ground state of C20

also might be described by considering valence bond states, including only dimers of relatively
short length.

QMC results for the pair correlation are shown in figure 7(c) with U/t = 2, 3 and V = 0.
Interestingly, there is a peak in the pairing order when site 1 and i are NN sites. This again
supports the RVB or ‘spin dimer’ model for the ground state. Beyond the nearest-neighbor
distance, the pairing correlation function, along with the other correlation functions, is very
close to its uncorrelated value except for d1i = R, where the pairing order parameter is
slightly enhanced. At the same time the spin–spin correlation is slightly negative, showing
an antiferromagnet correlation. This corresponds to the ‘dumb bell’ model proposed in [22]
where electron pairs are formed at the maximal distances of the molecular diameter. We note
that, in the present case, the enhancement of the correlations at the distance of R corresponding
to this ‘dumb bell’ pairing is relatively weak.

We have also studied the influence of a non-zero V on the correlations. In figure 8 we
show results for a fixed U/t = 3 and three different values of V = 0, 0.1t, 0.2t . Clearly, the
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Figure 8. Variation of (a) charge–charge, (b) spin–spin, and (c) pairing correlation functions for
U = 3t and V = 0, 0.1t, 0.2t for a C20 molecule with respect to the lattice site spacing.

effect of the NN Coulomb interaction V on these correlation functions is relatively weak, with
the curves being almost identical for the range of V considered here.

5. Conclusions

In this paper we have studied the extended Hubbard model on a C20 molecule through ED
and PQMC simulations. The comparison clearly elucidates the relative strengths of the two
methods. PQMC is possible for much larger systems than can be treated by ED. However,
ED has been applied successfully to the Hubbard model on 20 sites with 18–22 electrons, by
making effective use of the capabilities of a large number of coupled processors. PQMC works
best when the ground state is well separated from excited states with the same value of Sz . As a
result, ground states with larger total spin S and maximal |Sz | are determined most accurately,
while ground states with S = 0 are sometimes problematic. This behavior was also found in
our earlier work on C60 [4], and the comparison of ED and PQMC results for C20 is consistent
with and lends confidence to those earlier results.

The pair-binding energy for C20 shows that extra added electrons (holes) prefer to sit on
different molecules, rather than to reside in pairs on molecules. This rules out the possibility
that the extended Hubbard model on a single C20 molecule can produce an effective attraction
between electrons (holes) from purely electronic interactions. Our earlier work showed that
this conclusion applies to the C60 molecule as well [4]. We also find that Hund’s rule is obeyed
for U/t � 3 and small values of V and that larger values of U and V lead to level crossings
and ground states for which Hund’s rule is violated. For fixed V = 0, we have determined
that this transition happens between U/t = 3 and 5, at Uc/t ∼ 4.2. And for fixed U/t = 2,
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as a function of V , we have determined that this transition happens between V/t = 1 and
1.5, at Vc ∼ 1.1. As was the case at the transition occurring at Uc/t ∼ 4.2 for V = 0,
we expect this transition to coincide with a metal–insulator transition for molecular solids
formed of C20. More generally, for U/t � 3 and V/t � 0.2, we find that the spin, charge
and pairing correlations fall off rapidly even in the presence of NN Coulomb repulsion. It is an
interesting open question if molecular solids formed of C20, in particular away from half-filling,
would display non-trivial order for V > Vc. The answer to this question would be numerically
demanding and we have therefore left it for future work.
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